4,616 research outputs found

    Prediction Possibility in the Fractal Overlap Model of Earthquakes

    Full text link
    The two-fractal overlap model of earthquake shows that the contact area distribution of two fractal surfaces follows power law decay in many cases and this agrees with the Guttenberg-Richter power law. Here, we attempt to predict the large events (earthquakes) in this model through the overlap time-series analysis. Taking only the Cantor sets, the overlap sizes (contact areas) are noted when one Cantor set moves over the other with uniform velocity. This gives a time series containing different overlap sizes. Our numerical study here shows that the cumulative overlap size grows almost linearly with time and when the overlapsizes are added up to a pre-assigned large event (earthquake) and then reset to `zero' level, the corresponding cumulative overlap sizes grows upto some discrete (quantised) levels. This observation should help to predict the possibility of `large events' in this (overlap) time series.Comment: 6 pages, 6 figures. To be published as proc. NATO conf. CMDS-10, Soresh, Israel, July 2003. Eds. D. J. Bergman & E. Inan, KLUWER PUB

    Systems approaches and algorithms for discovery of combinatorial therapies

    Full text link
    Effective therapy of complex diseases requires control of highly non-linear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of signaling in cellular networks. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper we describe the main current and proposed approaches to the design of combinatorial therapies, including the empirical methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.Comment: 25 page

    The Underestimation Of Egocentric Distance: Evidence From Frontal Matching Tasks

    Get PDF
    There is controversy over the existence, nature, and cause of error in egocentric distance judgments. One proposal is that the systematic biases often found in explicit judgments of egocentric distance along the ground may be related to recently observed biases in the perceived declination of gaze (Durgin & Li, Attention, Perception, & Psychophysics, in press), To measure perceived egocentric distance nonverbally, observers in a field were asked to position themselves so that their distance from one of two experimenters was equal to the frontal distance between the experimenters. Observers placed themselves too far away, consistent with egocentric distance underestimation. A similar experiment was conducted with vertical frontal extents. Both experiments were replicated in panoramic virtual reality. Perceived egocentric distance was quantitatively consistent with angular bias in perceived gaze declination (1.5 gain). Finally, an exocentric distance-matching task was contrasted with a variant of the egocentric matching task. The egocentric matching data approximate a constant compression of perceived egocentric distance with a power function exponent of nearly 1; exocentric matches had an exponent of about 0.67. The divergent pattern between egocentric and exocentric matches suggests that they depend on different visual cues

    Invariant Distribution of Promoter Activities in Escherichia coli

    Get PDF
    Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest design constraints that shape the allocation of transcriptional resources

    Traces of the Second Demographic Transition in Four Selected Countries in Central and Eastern Europe: Union Formation as a Demographic Manifestation

    Get PDF
    Using data from the first round of the national Gender and Generations Surveys of Russia, Romania, and Bulgaria, and from a similar survey of Hungary, which were all collected in recent years, we study rates of entry into marital and non-marital unions. We have used elements from the narrative of the Second Demographic Transition (SDT) as a vehicle to give our analysis of the data from the four countries some coherence, and find what can be traces of the SDT in these countries. The details vary by country; in particular, latter-day developments in union formation patterns did not start at the same time in all the countries, but in our assessment it began everywhere before communism fell, that is, before the societal transition to a market economy got underway in 1990

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Logarithmic rate dependence in deforming granular materials

    Full text link
    Rate-independence for stresses within a granular material is a basic tenet of many models for slow dense granular flows. By contrast, logarithmic rate dependence of stresses is found in solid-on-solid friction, in geological settings, and elsewhere. In this work, we show that logarithmic rate-dependence occurs in granular materials for plastic (irreversible) deformations that occur during shearing but not for elastic (reversible) deformations, such as those that occur under moderate repetitive compression. Increasing the shearing rate, \Omega, leads to an increase in the stress and the stress fluctuations that at least qualitatively resemble what occurs due to an increase in the density. Increases in \Omega also lead to qualitative changes in the distributions of stress build-up and relaxation events. If shearing is stopped at t=0, stress relaxations occur with \sigma(t)/ \sigma(t=0) \simeq A \log(t/t_0). This collective relaxation of the stress network over logarithmically long times provides a mechanism for rate-dependent strengthening.Comment: 4 pages, 5 figures. RevTeX

    CR1 Knops blood group alleles are not associated with severe malaria in the Gambia

    Get PDF
    The Knops blood group antigen erythrocyte polymorphisms have been associated with reduced falciparum malaria-based in vitro rosette formation (putative malaria virulence factor). Having previously identified single-nucleotide polymorphisms (SNPs) in the human complement receptor 1 (CR1/CD35) gene underlying the Knops antithetical antigens Sl1/Sl2 and McC(a)/McC(b), we have now performed genotype comparisons to test associations between these two molecular variants and severe malaria in West African children living in the Gambia. While SNPs associated with Sl:2 and McC(b+) were equally distributed among malaria-infected children with severe malaria and control children not infected with malaria parasites, high allele frequencies for Sl 2 (0.800, 1,365/1,706) and McC(b) (0.385, 658/1706) were observed. Further, when compared to the Sl 1/McC(a) allele observed in all populations, the African Sl 2/McC(b) allele appears to have evolved as a result of positive selection (modified Nei-Gojobori test Ka-Ks/s.e.=1.77, P-value <0.05). Given the role of CR1 in host defense, our findings suggest that Sl 2 and McC(b) have arisen to confer a selective advantage against infectious disease that, in view of these case-control study data, was not solely Plasmodium falciparum malaria. Factors underlying the lack of association between Sl 2 and McC(b) with severe malaria may involve variation in CR1 expression levels

    Robustness Through Regime Flips in Collapsing Ecological Networks

    Get PDF
    © 2019, Crown. There has been considerable progress in our perception of organized complexity in recent years. Recurrent debates on the dynamics and stability of complex systems have provided several insights, but it is very difficult to find identifiable patterns in the relationship between complex network structure and dynamics. Traditionally an arena for theoreticians, much of this research has been invigorated by demonstration of alternate stable states in real world ecosystems such as lakes, coral reefs, forests and grasslands. In this work, we use topological connectivity attributes of eighty six ecological networks and link these with random and targeted perturbations, to obtain general patterns of behaviour of complex real world systems. We have analyzed the response of each ecological network to individual, grouped and cascading extinctions, and the results suggest that most networks are robust to loss of specialists until specific thresholds are reached in terms of network geodesics. If the extinctions persist beyond these thresholds, a state change or ‘flip’ occurs and the structural properties are altered drastically, although the network does not collapse. As opposed to simpler or smaller networks, we find larger networks to contain multiple states that may in turn, ensure long-term persistence, suggesting that complexity can endow resilience to ecosystems. The concept of critical transitions in ecological networks and the implications of these findings for complex systems characterized by networks are likely to be profound with immediate significance for ecosystem conservation, invasion biology and restoration ecology.Non

    Signal-averaged P wave analysis for delineation of interatrial conduction – Further validation of the method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study was designed to investigate the effect of different measuring methodologies on the estimation of P wave duration. The recording length required to ensure reproducibility in unfiltered, signal-averaged P wave analysis was also investigated. An algorithm for automated classification was designed and its reproducibility of manual P wave morphology classification investigated.</p> <p>Methods</p> <p>Twelve-lead ECG recordings (1 kHz sampling frequency, 0.625 <it>μ</it>V resolution) from 131 healthy subjects were used. Orthogonal leads were derived using the inverse Dower transform. Magnification (100 times), baseline filtering (0.5 Hz high-pass and 50 Hz bandstop filters), signal averaging (10 seconds) and bandpass filtering (40–250 Hz) were used to investigate the effect of methodology on the estimated P wave duration. Unfiltered, signal averaged P wave analysis was performed to determine the required recording length (6 minutes to 10 s) and the reproducibility of the P wave morphology classification procedure. Manual classification was carried out by two experts on two separate occasions each. The performance of the automated classification algorithm was evaluated using the joint decision of the two experts (i.e., the consensus of the two experts).</p> <p>Results</p> <p>The estimate of the P wave duration increased in each step as a result of magnification, baseline filtering and averaging (100 ± 18 vs. 131 ± 12 ms; P < 0.0001). The estimate of the duration of the bandpass-filtered P wave was dependent on the noise cut-off value: 119 ± 15 ms (0.2 <it>μ</it>V), 138 ± 13 ms (0.1 <it>μ</it>V) and 143 ± 18 ms (0.05 <it>μ</it>V). (P = 0.01 for all comparisons).</p> <p>The mean errors associated with the P wave morphology parameters were comparable in all segments analysed regardless of recording length (95% limits of agreement within 0 ± 20% (mean ± SD)). The results of the 6-min analyses were comparable to those obtained at the other recording lengths (6 min to 10 s).</p> <p>The intra-rater classification reproducibility was 96%, while the interrater reproducibility was 94%. The automated classification algorithm agreed with the manual classification in 90% of the cases.</p> <p>Conclusion</p> <p>The methodology used has profound effects on the estimation of P wave duration, and the method used must therefore be validated before any inferences can be made about P wave duration. This has implications in the interpretation of multiple studies where P wave duration is assessed, and conclusions with respect to normal values are drawn.</p> <p>P wave morphology and duration assessed using unfiltered, signal-averaged P wave analysis have high reproducibility, which is unaffected by the length of the recording. In the present study, the performance of the proposed automated classification algorithm, providing total reproducibility, showed excellent agreement with manually defined P wave morphologies.</p
    corecore